Hopf Bifurcation in Machining
نویسندگان
چکیده
The classical theorem of Hopf Bifurcation for the study of periodic solutions of ordinary differential equations (ODEs) at an equilibrium point has become the standard mathematical tool for reducing higher dimensional dynamical systems to lower dimensional systems, while at the same time preserving the emanating dynamics. The attraction for this tool is due to the fact that the classical Hopf theorem imposes generic conditions on the systems for the bifurcation to occur, and also, it provides explicit algorithms for the characterization of the possible dynamics. In this paper, we employ Hopf’s theorem and the centre manifold theorem to reduce the infinite-dimensional character of delay differential equations, describing the instability machining induced by regenerative chatter in orthogonal machining process, to a four-dimensional ODEs. We will conduct numerical simulations of the cutting force as a function of the shear angle, tool geometry and the cutting conditions in the future when specific values for the model parameters have been determined experimentally.
منابع مشابه
HOPF BIFURCATION CONTROL WITH PD CONTROLLER
In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملEffects of the Bogie and Body Inertia on the Nonlinear Wheel-set Hunting Recognized by the Hopf Bifurcation Theory
Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical speeds are obtained using Bogoliubov method. A compreh...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کامل